The Universal Networking Language (UNL) Specifications Version 2.0a

Restricted-access Document:
Do not copy or distribute, except as specified under contractual conditions

UNU/IAS/UNL Center

July, 1999

Introduction

The Universal Networking Language (UNL) is an electronic language for computers to express and exchange every kind of information.
The UNL represents information, i.e. meaning, sentence by sentence. Sentence information is represented as a hyper-graph having concepts as nodes and relations as arcs. This hyper-graph is also represented a set of directed binary relations, each between two of the concepts present in the sentence.
Concepts are represented as character-strings called "Universal Words(UWs)". UWs can be annotated with attributes which provide further information about how the concept is being used in the specific sentence.
A UNL document, then, will be a long list of relations between concepts.

Relations

Binary relations are the building blocks of UNL sentences. They are made up of a relation and two UWs. This section deals with the definition and interpretation of the relations that are used as the basis of the UNL.
The relations between UWs in binary relations have different labels according to the different roles they play. These Relation-Labels are listed and defined below. Conventions for syntax notation are found in Appendix 3.

Internal structure of Binary relations

Binary relations are made up as follows:
<Binary Relation> ::= <Relation Label> [":"<Compound UW-ID>]
"(" $\{<$ UW 1 > | ":" <Compound UW-ID1>\} "," $\{<$ UW2> | ":"<Compound UW-ID2>\} ")"
These elements will be defined in the paragraphs below.
Example binary relations are:
mod:01(area(icl>place):02.@indef, strategic)
obj(designate(icl>do).@entry.@may, :01)
plc(read(icl>do), home)
Relation-Labels

Relation-labels are strings of three lower-case alphabetic characters taken from the closed inventory listed below.

[^0]Examples are the elements in bold face type below:

```
mod:01(area(icl>place):02.@indef, strategic)
obj(designate(icl>do).@entry.@may, :01)
plc(read(icl>do), home)
Compound UW-IDs
```

Compound UW-IDs are strings of two upper-case alphabetic characters and digits used to identify each instance specified by Compound UWs. Compound UWs are groups of binary relations(called "Scope-Nodes") so that they can be referred to as an UW. Examples are the elements in bold face type below. The first example is an instance of compound UW-IDs being used to define a unit; the second example is an instance of Compound UW-IDs being used to cite or refer to a Compound UW previously defined. See Compound UWs for further information.

```
mod:01(area(icl>place):02.@indef, strategic)
obj(designate(icl>do).@entry.@may, :01)
plc(read(icl>do), home(icl>place))
```

Note that the ":02" in the first example is not a Compound UW-ID but an UW-ID. A Compound UW-ID is either attached directly to Relation-Labels or appear alone, as UWs. See UW-IDs for further information.

Uws

UWs can be UWs or compound UWs. Examples are the six elements in bold face type below. Non-standard formatting has been used to make them clearer.

```
mod:01( area(icl>place):02.@indef, strategic)
plc( read(icl>do), home(icl>place))
obj( designate(icl>do).@entry.@may,

\section*{Binary relations}

In the UNL, binary relations are represented as less than three-character strings called "Relation-Labels" and are defined as specified below.
There are many factors to be considered in choosing an inventory of relations. The principles to choose relations as follows.

Principle 1) Necessary Condition
When an UW has relations between more than two other UWs, each relation label should be set as to be able to identify each relation on the premise that we have enough knowledge about a concept of each UW express.

Principle 2) Sufficient Condition
When there are relations between UWs, each relation label, we should be set as to be able to understand each role of each UW only by referring a relation label.

\section*{agt (agent)}

Agt defines a thing which initiates an action.
agt (do, thing)

\section*{Syntax}
agt [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Detailed Definition}

Agent is defined as the relation between:
UW1 - do, and
UW2 - a thing
where:
- UW2 initiates UW1, or
- UW2 is thought of as having a direct role in making UW1 happen.

\section*{Examples and readings}
agt(break(icl>do), John(icl>person)) John breaks
agt(translate(icl>do), computer(icl>machine)) computer translates ...
agt(run(icl>do), car(icl>thing))
car runs ...
agt(break(icl>do), explosion(icl>event))
explosion breaks ...

\section*{Related Relations}

Agent is different from cag in that agent initiates the action, whereas the co-agent initiates a different, accompanied action.
Agent is different from ptn in that agent is the focussed initiator of the action, whereas the partner is a non-focussed initiator.
Agent is different from con in that agent is the focussed initiator of the action, whereas condition is an indirect, usually unfocussed, influence on the action.

\section*{and (conjunction)}

And defines a conjunctive relation between concepts.
and (*, *)

\section*{Syntax \\ and [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"}

\section*{Detailed definition}

Conjunction is defined as the relation between:
UW1 - a concept, and
UW2 - another concept,
where:
- The UWs are different, and
- UW1 and UW2 are seen as grouped together, and
- what is said of UW1 is also said of UW2.

\section*{Examples and readings}
and(quichly, easily) ... easily and quickly
and(dream(icl>do), think(icl>do)) \(\quad .\). to think and to dream
and(Mary(icl>person), John(icl>person)) ... John and Mary

\section*{Related Relations}

Conjunction is different from or in that with and we group things together to say the same thing about both of them, whereas with or we separate them to say that what is true about one is not true about the other.
Conjunction is different from cag in that when agents are conjoined both are initiating an explicit event, whereas with cag, the co-agent initiates an implicit event.
Conjunction is different from ptn in that when agents and partners are conjoined both are in focus, whereas with ptn, the partner is not in focus (as compared to the agent).
Conjunction is different from coo and seq in meaning, although many times the same expressions can be used for both. Conjunction only means that terms are grouped together; no information about time is implied. Coo, on the
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
other hand, means that the terms are in the same time, whether or not they are considered to be grouped together. In turn, seq means that the terms are ordered in time, one after the other.

\section*{aoj (thing with attribute)}

Aoj defines a thing which is in a state or has an attribute.
aoj ((aoj>thing), thing)
aoj (thing, thing)

\section*{Syntax}
aoj [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Thing with attribute is defined as the relation between:
UW1 - a state or a thing which represent a state
UW2 - a thing,
where:
- UW1 is an attribute or state of UW2, or
- UW1 is a state associated with UW2.

\section*{Examples and readings}
aoj(red(aoj>thing), leaf(icl>thing)) leaf is red
aoj(available(aoj>thing), book(icl>thing)) book is available
aoj(nice(aoj>thing), ski(icl>event))
aoj(teacher(icl>thing), John(icl>person))
Skiiing is nice
aoj(have(aoj>thing,obj>thing), I)
obj(have(aoj>thing,obj>thing), pen(icl>thing))
aoj(know(aoj>thing,obj>thing), John(icl>person)) John knows ...
aoj(can(aoj>thing,obj>thing), I)
I can ...
aoj:01(difficult(aoj>thing), it)
It is difficult for John.
aoj(:01, John(icl>person))

\section*{Related Relations}

Thing with attribute is different from mod in that mod gives some restriction, whereas aoj gives a state or characteristic.
Thing with attribute is different from ben in that a beneficiary is quite independent from an focussed event or state but this event or state can be considered to give a good or bad influence, whereas aoj has more close relation and can be considered to describe a state or characteristic.
Thing with attribute is different from obj in that obj gives a thing which is directly affected by action or phenomenon, whereas, aoj gives a thing in a state.

\section*{bas (basis for expressing degree)}

Bas defines a thing used as the basis for expressing degree.
bas (degree, thing)

\section*{Syntax}
bas [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Basis is defined as the relation between:
UW1 - a degree, and
UW2 - a thing,
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
where:
- UW1 is a degree expressing similarity or difference, such as "more", "most", "less", "same", "similar", "like", "as much as", "at least" etc., and
- UW2 is some thing used as the basis for evaluating characteristics or quantity of some other (focussed) thing.

\section*{Examples and readings}
bas(more, rat(icl>thing))
...er than rat; more ... than rat
bas(like, star(icl>thing))
... like star
bas(same, b(icl>thing))
... the same as b
bas(at least, 12)
... the same as b
aoj(beautiful(aoj>thing), tulip(icl>thing))
tulip is more beautiful than rose
man(beautiful(aoj>thing), more)
bas(more, rose(icl>thing))
aoj(:01, John(icl>person)) John is more quiet than shay
man:01(quiet(aoj>thing), more)
bas:01(more, shy(aoj>thing))

\section*{ben (beneficiary)}

Ben defines a not directly related beneficiary or victim of an event or state.
ben (occur, thing)
ben (do, thing)
ben ((aoj>thing), thing)

\section*{Syntax}
ben [":"<Compound UW-ID>] "" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed Definition}

Beneficiary is defined as the relation between:
UW1 - an event or state, and
UW2 - a thing,
where:
- UW2 is thought of as indirectly affected by UW1, as beneficiary or victim.

\section*{Examples and readings}
ben(give(icl>do), Mary(icl>person)) John give ... for Mary.
agt(give(icl>do), John(icl>person))
ben(good(aoj>thing), John) It is good for John to ...

\section*{Related Relations}

Beneficiary is different from aoj in that aoj has close relation and can be considered to describe a state characteristic, whereas a beneficiary is quite independent from an focussed event or state but this event or state can be considered to give a good or bad influence.

\section*{cag (co-agent)}

Cag defines a thing not in focus which initiates an implicit event which is done in parallel.
```

cag (do, thing)

```

\section*{Syntax}
cag [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Detailed definition}

Co-agent is defined as the relation between:
UW1 - an action, and
UW2 - a thing
where:
- There is an implicit action that is independent of, but accompanies, UW1, and
- UW2 is thought of as initiating the implicit action, and
- UW2 and the implicit action are seen as not being in focus (as compared to the agent's action).

\section*{Examples and readings}
cag(walk(icl>do), John(icl>person)) ... walk with John
cag(live(icl>do),aunt(icl>person))
... lives with aunt

\section*{Related relations}

Co-agent is different from agt in that different, independent actions occur for the agent and the co-agent. Moreover, the agent and its action are in focus, while the co-agent and its action are not in focus.
Co-agent is different from the ptn in that the co-agent initiates an action that is independent of the agent's action, whereas the partner initiates the same action together with the agent.
Co-agent is different from con in that the co-agent initiates a non-focussed action, whereas the condition is an indirect influence on the focussed action.

\section*{cao (co-thing with attribute)}

Cao defines a thing not in focus which is in a state in parallel.
```

cao ((aoj>thing), thing)

```
cao (thing, thing)

\section*{Syntax}
```

cao [":"<Compound UW-ID>] "(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

```

\section*{Detailed definition}

Co-thing with attribute is defined as the relation between:
UW1 - a state or a thing which represent a state
UW2 - a thing,
where:
- There is an implicit state that is independent of, but accompanies, UW1, and
- UW2 is in an implicit state, or
- UW2 is associated with an implicit state.

\section*{Examples and readings}
cao(exist(aoj>thing), you) ... is here with you

\section*{Related relations}

Co-thing with attribute is different from aoj in that there is a different, independent state for the thing with attribute and co-thing with attribute respectively.

\section*{cnt (content)}

Cnt defines an equivalent concept.
cnt (thing, thing)

\section*{Syntax}


\section*{Detailed Definition}

Content is defined as the relation between:
UW1 - a thing, and
UW2 - a thing,
where:
- UW2 is a content or explanation of UW1

\section*{Examples and readings}
cnt(unl(icl>language), universal networking language(icl>language)
UNL, Universal Networking Language
cnt(internet(icl>network), amalgamation(icl>thing)) Internet: an amalgamation
cnt(language generator(icl>tool), deconvertor(icl>tool).@double_quotation)
a language generator "deconvertor"...

\section*{cob (affected co-thing)}

Cob defines a thing which is directly affected by an implicit event done in parallel or an implicit state in parallel.
cob (occur, thing)
cob (do, thing)
cob ((aoj>thing,obj>thing), thing)
```

Syntax
cob [":"<Compound UW-ID>] "(" {<UW1>\":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

```

\section*{Detailed Definition}
"Co-object" is defined as the relation between:
UW1 - an event or state, and
UW2 - a thing,
where:
- UW2 is thought of as directly affected by an implicit event done in parallel or an implicit state in parallel.

\section*{Examples and readings}
cob(die(icl>occur), Mary(icl>person)) ... died with Mary
\(\operatorname{cob}\) (have(aoj>thing,obj>thing), pencil(icl>thing)) ... have a pen with a pencil
obj(have(aoj>thing,obj>thing), pen(icl>thing))

\section*{Related concepts}

Co-object is different from obj in that the obj is in focus, whereas the cob is related to a second, non-focussed implicit event or state.

\section*{con (condition)}

Con defines an non-focused event or state which conditioned a focused event or state.
```

con (occur, occur)
con (occur, do)
con (occur, (aoj>thing))
con (do, occur)
con (do, do)
con (do, (aoj>thing))
con ((aoj>thing), occur)
con ((aoj>thing), do)
con ((aoj>thing), (aoj>thing))

```
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
```

Syntax
con [":"<Compound UW-ID>] "(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

```

\section*{Detailed definition}

Condition is defined as the relation between:
UW1 - a focussed event or state, and
UW2 - a conditioning event or state,
where:
- UW1 and UW2 are different and
- UW2 is thought of as having an indirect or external role in making UW1 happen, that is as some conditioning or inhibiting factor (real or hypothesized) which influences whether or when UW1 can happen.

\section*{Examples and readings}
aoj:01(green(aoj>thing), light (icl>thing)) If light is green, ... go con(go(icl>do), :01)

\section*{coo (co-occurrence)}

Coo defines a co-occurred event or state for a focussed event or state.
```

coo (occur, occur)
coo (occur, do)
coo (occur, (aoj>thing))
coo (do, occur)
coo (do, do)
coo (do, (aoj>thing))
coo ((aoj>thing), occur)
coo ((aoj>thing), do)
coo ((aoj>thing), (aoj>thing))

```

\section*{Syntax}
```

coo [":"<Compound UW-ID>] "(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

```

\section*{Detailed definition}

Co-occurrence is defined as the relation between:
UW1 - a focussed event or state,
UW2 - a co-occurred event or state,
where:
- UW1 and UW2 are different, and
- UW1 occurs or is true at the same time as UW2.

\section*{Examples and readings}
coo(run(icl>do), cry(icl>do)) ... run with crying
coo(red(aoj>thing), hot(aoj>thing)) ... is red while ... is hot

\section*{Related Relations}

Co-occurrence is different from seq in that seq describes events or states that do not occur at the same time, but one after the other, whereas coo describes events that occur simultaneously.
Co-occurrence is different from tim in that coo relates the times of events or states with other events or states, whereas tim relates events or states directly with points or intervals of time.

\section*{dur (duration)}

Dur defines a period of time during an event occurs or a state exists.
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
dur (occur, period)
dur (do, period)
dur ((aoj>thing), period)
Syntax
dur [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Duration is defined as the relation between:
UW1 - an event or state,
UW2 - a period that the event or state continues,

\section*{Examples and readings}
dur(work(icl>do), hour(icl>period)) ... work nine hours
qua(hour(icl>period), 9)
dur(talk(icl>do), meeting(icl>event) ... talk during meeting
dur(come(icl>do), absence(icl>state)) ... come during ... absence

\section*{fmt (range:from-to)}

Fmt defines a range between two things.
fmt (thing, thing)

\section*{Syntax}
fmt [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Range (from-to) is defined as the relation between:
UW1 - a range-initial thing, and
UW2 - a range-final thing,
where:
- The UWs are different, and
- UW2 describes the beginning of a range and UW1 describes the end.

\section*{Examples and readings}
fmt(a(icl>letter), \(z\) (icl>letter))
... from a to \(z\)
fmt(Osaka(icl>place), New York(icl>place)) ... from Osaka to New York
fmt(Monday(icl>time), Friday(icl>time))
... from Monday to Friday

\section*{Related Relations}

Range is different from sre and gol in that for src and gol the initial and final states of some obj are characterized with respect to some event, whereas fmt makes a similar characterization but without linking the endpoints of a range to some event.
Range is different from plf and plt or \(\mathbf{t m f}\) and \(\mathbf{t m t}\) in that \(\mathbf{f m t}\) defines endpoints of a range without reference to any sort of event, whereas plf, plt, tmf and tmt delimit events.

\section*{frm (origin)}

Frm defines an origin of a thing.
frm (thing, thing)
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Syntax}
```

frm [":"<Compound UW-ID>] "(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

```

\section*{Detailed definition}

Origin is defined as the relation between:
UW1 - a thing, and
UW2 - a origin of the thing,
where:
- UW2 describes the origin such as original position of UW1.

\section*{Examples and readings}
frm(man(icl>person), Japan(icl>country))
... man from Japan

\section*{gol (goal: final state)}

Gol defines the final state of object or the thing finally associated with object of an event.
```

gol (occur(gol>thing), thing)

```
gol (do(gol>thing), thing)
Syntax
gol [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Final state is defined as the relation between:
UW1 - an event, and
UW2 - a state or thing,
where:
- UW2 is the specific state describing the obj (of UW1) at the end of UW1, or
- UW2 is a thing that is associated with the obj (of UW1) and the end of UW1.

\section*{Examples and readings}
gol(go(gol>place), sad(aoj>person) ... go ... to sad
gol(change(gol>thing), red(aoj>thing))
\(\ldots\) go \(\ldots\) to sad
\(\ldots\) change \(\ldots\) to red
gol(transform(gol>thing), strong(aoj>thing)) ... is transformed ... to strong
gol(post(gol>thing), account(icl>place))

\section*{Related Relations}

Final characteristics is different from tmf and plf in that gol describes qualitative characteristics and not time or place.
Final characteristics is different from src in that gol describes the characteristics of the obj at the final state of the event.

\section*{ins (instrument)}

Ins defines the instrument to carry out an event.
ins (do, concrete thing)

\section*{Syntax}
ins [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Instrument is defined as the relation between:
UW1 - an event, and
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

UW2 - a concrete thing,
where:
- UW2 specifies the concrete thing which is used in order to make UW1 happen.

\section*{Examples and readings}
ins(look(icl>do), telescope(icl>thing)) ... look ... with telescope
ins(solve(icl>do), pencil(icl>thing)) ... solve ... using pencil
ins(separate(icl>do), knife(icl>thing)) ... separate ... with knife

\section*{Related Relations}

Instrument is different from man in that man describes an event as a whole, whereas ins characterizes one of the components of the event: the use of the instrument.
Instrument is different from met in that met is used for abstract things (abstract means or methods), whereas "ins" is used for concrete things.

\section*{man (manner)}

Man defines the way to carry out event or characteristics of a state.
man (occur, how)
man (do, how)
man ((aoj>thing), how)

\section*{Syntax}
man [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}
"Manner" is defined as the relation between:
UW1 - an event or state,
UW2 - a manner,
where:
- The UWs are different, and
- UW1 is done or exist in a way characterized by UW2

\section*{Examples and readings}
man(look(icl>do), quickly) ... look quickly
man(think(icl>do), often) ... think often ...
man(beautiful(aoj>thing), very) very beautiful

\section*{Related Relations}

Manner is different from ins or met in that met describes how an event is carried out in terms of the instruments or component steps of the event, whereas man describes other quantitative or qualitative characteristics of the event as a whole.

\section*{met (method or means)}

Met defines the means to carry out an event.
```

met (do, abstract thing)

```

\section*{Syntax}
met [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}
"Method or means" is defined as the relation between:

UW1 - an event, and
UW2 - an abstract thing,
where:
- UW2 specifies the abstract thing which is used or the steps carried out in order to make UW1 happen.

\section*{Examples and readings}
met(solve(icl>do), dynamics(icl>abstract thing)) ... solve ... with dynamics
met(solve(icl>do), algorithm(icl>abstract thing)) ... solve ... using algorithm
met(separate(icl>do), cut(icl>do)) ... separate ... by cutting ...

\section*{Related Relations}

Method or means is different from man in that man describes an event as a whole, whereas met characterizes the component steps, procedures or instruments of the event
Method or means is different from ins in that met is used for abstract things (abstract means or methods), whereas ins is used for concrete things.

\section*{mod (modification)}

Mod defines a thing which restrict a focussed thing.
mod (thing, thing)
mod (thing, (mod>thing))

\section*{Syntax}
mod [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}
"Modification" is defined as the relation between:
UW1 - a focussed thing,
UW2 - a thing which restrict UW1 in some way

\section*{Examples and readings}
mod(story(icl>thing), whole) whole story
\(\bmod (\) plan(icl>thing), master) master plan
mod(part(icl>thing), main) main part
qua(block(icl>thing), 3)) three blocks of ice
mod(ice(icl>thing), block(icl>thing))

\section*{Related Relations}

Modification is different from aoj in that aoj describes a state or characteristic of a thing, whereas mod merely indicates an restriction, which might indirectly suggest some characteristics of the thing described. Most mod relations require a paraphrase introducing some implicit event to become clearer and even then many possibilities are usually available.
Modification is different from man in that man describes a way to carry out event or characteristics of a state.

\section*{nam (name)}

Nam defines a name of a thing.
nam (thing, thing)
```

Syntax
nam [":"<Compound UW-ID>] "(" {<UW1>\":"<Compound UW-ID>} "," {<UW2>\":"<Compound UW-ID>} ")"

```

\section*{Detailed definition}

Name is defined as the relation between:
UW1 - a thing,
UW2 - a thing used as a name,
where:
- UW2 is a name of UW1.

\section*{Examples and readings}
nam(tower(icl>thing), Tokyo(icl>thing)) Tokyo tower

\section*{obj (affected thing)}

Obj defines a thing in focus which is directly affected by an event or state.
obj (occur, thing)
obj (do, thing)
obj ((aoj>thing,obj>thing), thing)

\section*{Syntax}
obj [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed Definition}

Affected thing is defined as the relation between:
UW1 - an event or state, and
UW2 - a thing,
where:
- UW2 is thought of as directly affected by an event or state.

\section*{Examples and readings}
obj(move(icl>do), table(icl>thing)) table move
obj(melt(icl>occur), snow(icl>thing)) snow melt
obj(cure(icl>do), paitient(icl>person)) cure paitient
obj(have(aoj>thing,obj>thing), pen(icl>thing)) ... have a pen

\section*{Related Relations}

Affected thing is different from cob in that the obj is in focus, whereas the cob is related to a second, non-focussed implicit event or state.

\section*{opl (affected place)}

Opl defines a place in focus where an event affects.

> opl (do, place)

\section*{Syntax}
opl [":"<Compound UW-ID>] "(" \(\{<U W 1>\mid ": "<C o m p o u n d ~ U W-I D>\} ~ ", " ~\{<U W 2>\mid ": "<C o m p o u n d ~ U W-I D>\} ~ ") " ~\)

\section*{Detailed Definition}

Affected place is defined as the relation between:
UW1 - an event, and
UW2 - a place or thing defining a place,
where:
- UW2 is the specific place where the change described by UW1 is directed, or
- UW2 is a place that is seen as being affected during the event.
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Examples and readings}
opl(pat(icl>do), shoulder(icl>thing)) ... pat ... on shoulder
opl(cut(icl>do), middle(icl>place)) ... cut ... in middle

\section*{Related Relations}

Affected place is different from obj and cob in that what is affected by the event is a place rather than other kinds of things.
Affected place is different from ple in that the affected place is characterized by the event, while the physical and logical place define the environment in which the event happens.

\section*{or (disjunction)}

Or defines disjunctive relation between two concepts.
or (thing, thing)

\section*{Syntax}
or [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Disjunction is defined as the relation between:
UW1 - a thing and
UW2 - a concept,
where:
- The UWs are different, and
- Some description is true for either UW1 or UW2 (but not both), or
- Some description is true for either UW1 or UW2 (and perhaps both).

\section*{Examples and readings}
or(stay(icl>do), leave(icl>do)) ... stay or leave
or(red(icl>color), blue(icl>color)) ... red or blue
or(John(icl>person), Jack(icl>person)) ... John or Jack

\section*{Related Relations}

Disjunction is different from conjunctionn that the disjunction things are grouped in order to say that something is true for one or the other, whereas in conjunction they are grouped to say that the same is true for both. Disjunction in formal logic permits three situations for a disjunction to be true: 1) it is true for UW1, 2) it is true for UW2, 3) it is true for both. On the other hand, conjunction only permits the third situation.

\section*{per (proportion, rate or distribution)}

Per defines a basis or unit of proportion, rate or distribution.
per (thing, thing)

\section*{Syntax}


\section*{Detailed definition}

Proportion, rate or distribution is defined as the relation between:
UW1 - a quantity,
UW2 - a quantity, or a thing seen as a quantity,
where:
- UW1 and UW2 form a proportion, where UW1 is the numerator and UW2 is the denominator, or
- UW2 is the basis or unit for understanding UW1, or
- Each UW expresses a different dimension, of size, for example.
\begin{tabular}{ll} 
Examples and readings & \\
per(2, day(icl>period)) & \(\ldots\) two ... per day \\
per(time(icl>unit), week(icl>period)) & ... twice a week \\
qua(time(icl>unit), 2) &
\end{tabular}

\section*{plc(place)}

Plc defines the place an event occurs or a state is true or a thing exists.
plc (occur, thing)
plc (do, thing)
plc ((aoj>thing), thing)
plc (thing, thing)
Syntax
plcl [":"<Compound UW-ID>] "(" \(\{<U W 1>\mid ": "<C o m p o u n d ~ U W-I D>\} ~ ", " ~\{<U W 2>\mid ": "<C o m p o u n d ~ U W-I D>\} ~ ") " ~\)

\section*{Detailed definition}

Place is defined as the relation between:
UW1 - an event, state, or thing,
UW2 - a place or thing understood as a place,

\section*{Examples and readings}
plc(cook(icl>do), kitchen(icl>thing)) ... cook ... in kitchen
plc(sit(icl>do), beside(icl>relative place)) ... sit beside ...
plc(red(aoj>thing), bottom(icl>thing)) ... red on bottom

\section*{Related Relations}

Place is different from plf and plt or src and gol in that plc describes a place with respect to an event as a whole, whereas these other relations describe position with respect to parts of an event.
Place is different from opl in that ple is not seen as being modified by an event, merely a reference point for characterizing it, whereas opl is seen as being modified.

\section*{plf (initial place)}

Plf defines the place an event begins or a state becomes true.
plf (occur, thing)
plf (do, thing)
plf ((aoj>thing), thing)

\section*{Syntax}
plf [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}
"Initial place" (or "place-from") is defined as the relation between:
UW1 - an event or state, and
UW2 - a place or thing defining a place,
where:
- UW2 is the specific place where UW1 started, or
- UW2 is the specific place from where UW1 is true.

\section*{Examples and readings}
plf(go(icl>do), home(icl>place)) ... go from home ...
plf(call(icl>do), New York(icl>place)) ... call from New York
plf(cut(icl>do), edge(icl>place)) ... cut ... from edge ...
plf(beautiful(aoj>thing), side(icl>place)) ... is beautiful from side ...

\section*{Related Relations}

Initial place is different from ple in that plc describe events or states taken as wholes, whereas plf describes only the initial part of an event or state.
Initial place is different from plt in that plt describes the final part of an event or state, whereas plf describes the initial part of an event or state.
Initial place is different from src in that plf describes the place where the event began, whereas src describes the initial state of the obj.

\section*{plt (final place)}

Plt defines the place an event ends or a state becomes false.
plt (occur, thing)
plt (do, thing)
plt ((aoj>thing), thing)

\section*{Syntax}
plt [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Final place is defined as the relation between:
UW1 - an event or state, and
UW2 - a place or thing defining a place
where:
- UW2 is the specific place where UW1 ended, or
- UW2 is the specific place where UW2 becomes false.

\section*{Examples and readings}
plt(talk(icl>do), Boston(icl>place)) ... talk ... until Boston
plt(cut(icl>do), edge(icl>place)) ... cut ... to edge
plt(beautiful(icl>state), fence(icl>thing)) ... is beautiful up to fence

\section*{Related Relations}

Final place is different from plc in that plc describe events or states taken as wholes, whereas plt describes only the final part of an event.
Final place is different from plf in that plt describes the final part of an event or state, whereas plf describes the initial part of an event.
Final place is different from gol in that plt describes the place where an event or state ended, whereas gol described the final state of the \(\mathbf{o b j}\).

\section*{pof(part-of)}

Pof defines a concept of which a focussed thing is a part.
pof (thing, thing)

\section*{Syntax}
pof [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Detailed definition}

Part-of is defined as the relation between:
UW1 - a part thing, and
UW2 - a whole thing,
where:
- UW1 is the part of UW1.

Examples
pof(wing(icl>body), bird(icl>animal)) Bird's wing.

\section*{pos (possessor)}

Pos defines possessor of a thing.
pos (thing, volitional thing)
Syntax


\section*{Detailed definition}

Possessor is defined as the relation between:
UW1 - a thing or a place, and
UW2 - a human or non-human, seen-as-volitional thing
where:
- UW2 is a possessor of UW1.

Examples and redings
pos(dog(icl>thing), John(icl>person)) John's dog
pos(book(icl>thing), I)
my book

\section*{ptn (partner)}

Ptn defines indispensable non-focused initiator of an action
ptn (do, thing)

\section*{Syntax}
ptn [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Partner is defined as the relation between:
UW1 - an action, and
UW2 - a human or non-human, seen-as-volitional thing
where:
- UW2 is thought of as having a direct role in making an indispensable part of UW1 happen, and
- UW1 is the same, collaborative event as that initiated by the agent, and
- UW2 is seen as not being in focus (as compared to the agent).

\section*{Examples and redings}
ptn(compete(icl>do), John(icl>person)) ... compete with John
ptn(share(icl>do), poor(icl>person)) ... share ... with poor
ptn(collaborate(icl>do), machine(icl>thing)) ... collaborate with machine
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Related Relations}

Partner is different from agt in that the agent and its event are in focus, while the partner and its event are not in focus.
Partner is different from cag in that the co-agent initiates an event that is independent of the agent's event, whereas the partner initiates the same event together with the agent.
Partner is different from con in that the partner initiates the same event as the agent does whereas the condition is only an indirect influence on that event.

\section*{pur (purpose or objective)}

Pur defines the purpose or objectives of agent of an event or the purpose of a thing exist.
pur (occur, occur)
pur (occur, do)
pur (do, occur)
pur (do, do)
pur (occur, thing)
pur (do, thing)
pur (thing, occur)
pur (thing, do)
pur (thing, thing)

\section*{Syntax}
pur [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Purpose or objective is defined as the relation between:
UW1 - a thing or an event, and
UW2 - a thing or an event,
where:
- The UWs are different, and

When UW1 is an event:
- UW2 specifies the agent's purpose or objectives, or
- UW2 specifies the thing (object, state, event, etc.) that the agent desires to attain by carrying out UW1, or When UW1 is not an event:
- UW2 is what UW1 is to be used for.

\section*{Examples and readings}
pur(come(icl>do), see(icl>do)) ... come to see
pur(work(icl>do), money(icl>do)) ... work for money
pur(budget(icl>money), research(icl>do)) ... budget for research

\section*{Related Relations}

Purpose or objective is different from gol in that pur describes the desires of the agent, whereas gol describes the state of the obj at the end of the event.
Purpose or objective is different from man and met in that pur describes the reason why the event is being carried out, while man and met describe how it is being carried out.

\section*{qua (quantity)}

Qua defines quantity of a thing or unit.
qua (thing, quantity)
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
```

Syntax
qua [":"<Compound UW-ID>] "(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

```

\section*{Detailed definition}

Quantity is defined as the relation between:
UW1 - a thing, and
UW2 - quantity,
where:
- UW2 is the number or amount of UW1.

\section*{Examples and readings}
qua(block(icl>thing), 3)) three blocks of ice
mod(ice(icl>thing), block(icl>thing))
qua(kilo(icl>unit), many(aoj>thing)) many kilos ...
qua(truckload(icl>unit), 7) seven truckload ...

\section*{Related Relations}

Quantity is different from per in that quantity is absolute number or amount, whereas per is number or amount relative to some unit of reference (time, distance, etc.).
Quantity is also used to express iteration, or number of times an event or state occurs.

\section*{rsn (reason)}

Rsn defines a reason that an event or a state happens.
```

rsn (occur, thing)

```
rsn (do, thing)
rsn (occur, occur)
rsn (occur, do)
rsn (do, occur)
rsn (do, do)
rsn (occur, (aoj>thing))
rsn (do, (aoj>thing))
rsn ((aoj>thing), occur)
rsn ((aoj>thing), do)
rsn ((aoj>thing), thing)
rsn ((aoj>thing), (aoj>thing))

\section*{Syntax}
rsn [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Reason is defined as the relation between:
UW1 - an event or state,
UW2 - a reason of an event or state,
where:
- UW2 is a reason that UW1 happens.

\section*{Examples and readings}
\begin{tabular}{ll} 
rsn(go(icl>do), illness(icl>thing)) & go because of illness \\
agt:01(arrive(icl>occur), Mary(icl>person)) & Because Mary arrive, team collaborate ...
\end{tabular}
agt:01(arrive(icl>0ccur), Mary(icl>person))
Because Mary arrive, team collaborate ...
rsn(:02, :01)

\section*{scn (scene)}

Sen defines a virtual world where an event occurs or state is true or a thing exists.
```

scn (do, thing)
scn (occur, thing)
scn ((aoj>thing), thing)
scn (thing, thing)

```

\section*{Syntax}
scn [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Scene is defined as the relation between:
UW1 - an event or state or thing,
UW2 - an abstract or metaphorical thing understood as a place,

\section*{where:}
- The UWs are different, and
- UW1 is or happens in a place characterized by UW2.

\section*{Examples and readings}
\(\operatorname{scn}(\) win(icl>do), competition(icl>event)) ... win ... in competition
\(\operatorname{scn}\) (apear(icl>occur), program(icl>thing))
... appear on TV program
\(\bmod (\) program(icl>thing),TV(icl>thing))
scn(play(icl>do), movie(icl>thing))
... play in movie

\section*{Related Relations}

Scene is different from ple in that the reference place for ple is in real world, whereas for sen it is abstract or metaphorical world.

\section*{seq (sequence)}

Seq defines a prior event or state of a focused event or state.
```

seq (occur, occur)
seq (occur, do)
seq (do, occur)
seq (do, do)
seq (occur, (aoj>thing))
seq (do, state)
seq ((aoj>thing), occur)
seq ((aoj>thing), do)

```

\section*{Syntax}
```

seq [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

```

\section*{Detailed definition}
"Sequence" is defined as the relation between:
UW1 - a focussed event or state,
UW2 - a prior event or state,
where:
- The UWs are different, and
- UW1 occurs or is true after UW2.
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Examples and readings}
seq(leap(icl>dot), look(icl>do)) ... look before leaping
seq(green(aoj>thing), red(aoj>thing)) ... was red before ... was green

\section*{Related Relations}

Sequence is different from coo in that seq describes events or states that do not occur at the same time, but one after the other, whereas coo describes events that occur simultaneously.
Sequence is different from bas in that seq describes events or states in terms of order in time, whereas bas describes things or states in terms of qualitative differences or similarities.

\section*{src (source: initial state)}

Src defines the initial state of object or the thing initially associated with object of an event.
```

src (occur, thing)

```
src (do, thing)

\section*{Syntax}
src [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Initial state is defined as the relation between:
UW1 - an event, and
UW2 - a state or thing,
where:
- UW2 is the specific state describing the obj of UW1 at the beginning of UW1, or
- UW2 is a thing that is associated with the obj of UW1 at the beginning of UW1.

\section*{Examples and readings}
src(go(icl>change), sad(aoj>thing)) ... go from sad ...
src(change(icl>occur), red(aoj>thing))
... change from red
\(\operatorname{src}(\) transform(icl>do), weak(aoj>thing)) ... is transformed from weak ...
src(steal(icl>do), bank(icl>thing)) ... steal ... from bank

\section*{Related Relations}

Initial state is different from tmf and plf in that src describes qualitative characteristics and not time or place. Initial characteristics is different from gol in that gol describes the characteristics of the obj at the final state of the event.

\section*{tim (time)}

Tim defines the time an event occurs or a state is true.
tim (occur, time)
tim (do, time)
tim ((aoj>thing), time)

\section*{Syntax}
tim [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Time is defined as the relation between:
UW1 - an event or state,
UW2 - a time,
where:
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
- UW1, taken as a whole, occurs at the time indicated by UW2.

\section*{Examples and readings}
\begin{tabular}{ll}
\(\operatorname{tim}(\) look \((\) icl \(>\) do \()\), Tuesday(icl>time) \()\) & \(\ldots\) look on Tuesday \\
tim(cut(icl>do), o'clock(icl>time \())\) & \(\ldots\) cut \(\ldots\) at \(\ldots\) o'clock \\
tim \((\) start \((\) icl \(>\) do \(), \operatorname{come}(\) icl \(>\) do \())\) & \(\ldots\) start when \(\ldots\) come
\end{tabular}

\section*{Related Relations}

Time is different from tmf and tmt in that time characterized the event or state as a whole, whereas tmf and tmt describe only parts of the event.
Time is different from coo and seq in that time does not describe states and events relatively, with respect to each other, but with respect to certain points in time.

\section*{tmf (initial time)}

Time-from defines a time an event starts or a state become true.
tmf (occur, time)
tmf (do, time)
tmf ((aoj>thing), time)

\section*{Syntax}
tmf [":"<Compound UW-ID>] "(" \(\{<U W 1>\mid ": "<C o m p o u n d ~ U W-I D>\} ~ ", " ~\{<U W 2>\mid ": "<C o m p o u n d ~ U W-I D>\} ~ ") " ~\)

\section*{Detailed definition}

Initial time is defined as the relation between:
UW1 - an event or state, and
UW2 - a time,
where:
- UW2 specifies the time at which UW1 started, or
- UW2 specifies the time at which UW1 became/become true.

\section*{Examples and readings}
tmf(look(icl>do), morning(icl>time))
tmf(full(aoj>thing), noon(icl>time))
... is full at noon since morning

\section*{Related Relations}

Initial time is different from tim in that \(\mathbf{t m f}\) expresses the time at the beginning of the event or state whereas tim expresses a time for the event taken as a whole.
Initial time is different from src in that tmf expresses the time at the beginning of the event or state whereas src expresses characteristics of the obj at the beginning of the event.
Initial time is different from tmt in that tmf expresses the time at the beginning of the event or state whereas \(\mathbf{t m t}\) expresses the time at the end of the event.

\section*{tmt (final time)}

Time-to defines the time an event ends or a state becomes false.
```

tmt (occur, time)
tmt (do, time)
tmt ((aoj>thing), time)

```

\section*{Syntax}
```

tmt [":"<Compound UW-ID>] "(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

```

\section*{Detailed definition}

Final time is defined as the relation between:
UW1 - an event or state, and
UW2 - a time,
where:
- UW2 specifies the time at which UW1 ended, or
- UW2 specifies the time at which UW1 became/becomes false.

\section*{Examples and readings}
\begin{tabular}{lc} 
tmt(think(icl>do), morning(icl>time)) & \(\ldots\) think until moning \\
tmt(cut(icl>do), noon(icl>time)) & \(\ldots\) cut until noon \\
\(\operatorname{tmt}(\) full(aoj>thing), tomorrow(icl>time)) & \(\ldots\) be full until tomorrow
\end{tabular}

\section*{Related Relations}

Final time is different from tim in that tmt expresses the time at the end of the event or state, whereas tim expresses a time for the event taken as a whole.
Final time is different from gol in that tmt expresses the time at the end of the event or state, whereas gol expresses characteristics of the \(\mathbf{o b j}\) at the end of the event.
Final time is different from tmf in that tmt expresses the time at the end of the event or state, whereas tmt expresses the time at the beginning of the event.

\section*{to (destination)}

To defines a destination of a thing.
to (thing, thing)

\section*{Syntax}
to [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Destination is defined as the relation between:
UW1 - a thing, and
UW2 - a destination of the thing,
where:
- UW2 describes the destination such as final position of UW1.

\section*{Examples and readings}
to(train(icl>thing), London(icl>city)) ... train for London

\section*{via (intermediate place or state)}

Via defines a intermediate place or state of an event.
via (occur(gol>thing,src>thing), thing)
via (do(gol>thing,src>thing), thing)

\section*{Syntax}
via [":"<Compound UW-ID>] "(" \{<UW1>|":"<Compound UW-ID>\} "," \{<UW2>|":"<Compound UW-ID>\} ")"

\section*{Detailed definition}

Intermediate place or state is defined as the relation between:
UW1 - an event, and
UW2 - a place or state,
where:
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
- UW2 is the specific place or state describing the \(\mathbf{o b j}\) of UW1 at some time in the middle of UW1,
- UW2 is a thing that describes a place or state that the obj of UW1 passed by or through during UW1.

\section*{Examples and readings}
via(go(icl>do), New York(icl>place))
via(bike(icl>do), Alps(icl>place))
... go ... via New York
via(drive(icl>do), tunnel(icl>thing))
... bike ... through the Alps
... drive ... by way of tunnel

\section*{Related Relations}

Intermediate place or state is different from src, plf and tmf in that these all refer to the beginning of an event, whereas via describes the middle of an event.
Intermediate place or state is different from gol, plt and tmt in that these all refer to the end of an event, whereas via describes the middle of an event.

\section*{Universal Words}

A UW(Universal Word) represent simple or compound concepts. There are two classes of UWs:
- simple, unit concepts called "UWs" (Universal Words).
and
- compound structures of binary relations grouped together and called "Compound UWs". These are indicated with Compound UW-IDs, as described below.

\section*{Uws}

\section*{Syntax}

Informally, UWs are made up of a character string (an English-language word) followed by a list of constraints and a list of attributes. These can also be followed by an Instance ID. The meaning and function of each of these parts is described in the next section, on Interpretation.
The following expressions provide a more formal statement of the syntax of UWs. See Appendix 3 for notational conventions.
```

<UW> ::= <Head Word> [<Constraint List>] [":" <IUW-ID>] ["." <Attribute List>]
<Head Word> ::= <character>...
<Constraint List> ::= "(" <Constraint> ["," <Constraint>]... ")"
<Attribute List> ::= <Attribute Label> ["." <Attribute Label>]...
<UW-ID> ::= {<upper case alphabetical character> |<digit>}
{<upper case alphabetical character> <<digit>}
<Constraint> ::= <Relation Label> { ">" | "<" } <UW> [<Constraint List>] |
<Relation Label> {">" | <<"} <UW> [<Constraint List>]
[{">" | "<"} <UW> [<Constraint List>]] ...
<Attribute Label> ::= "@volitional" | "@reason" | "@past" |....
<Relation Label> ::= "agt" | and" | "aoj" | "obj" | "icl" | ...
<digit> ::= 0|1|2|...|
<upper case alphabetical character> ::= "A" | ... | "Z"
<character> ::= "a" | ... |"z"|"-" """ | "\#" "!" | "\$" | "%" | "=" | "^" | " " | | " " | "@" | "+" | "-" |

```

\section*{Interpretation}

\section*{HeadWord}

The Head Word is an English word/compound word/phrase/sentence that is interpreted as a label for a set of concepts: the set made up of all the concepts that may correspond to that in English. An Basic UW (with no restrictions or Constraint List) denotes this set. Each Restricted UW denotes a subset of this set that is defined by its Constraint List. Extra UWs denote new sets of concepts that do not have English-language labels.
Thus, the headword serves to organize concepts and make it easier to remember which is which.

\section*{Constraints or Restrictions}

The Constraint List restricts the interpretation of a UW to a subset or to a specific concept included within the Basic UW, thus the term "Restricted UWs".
The Basic UW "drink", with no Constraint List, includes the concepts of "putting liquids in the mouth", "liquids
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
that are put in the mouth", "liquids with alcohol", "absorb" and others.
The Restricted UW "drink(icl>do,obj>liquid)" denotes the subset of these concepts that includes "putting liquids in the mouth", which in turn corresponds to verbs such as "drink", "gulp", "chug" and "slurp" in English.
The restrictions of Restricted UWs, their Constraint Lists, are Constraints. The Constraints that use the Relation Labels defined above can be seen as an abbreviated notation for full binary relations: drink(icl>do,obj>liquid) is the same as obj(drink(icl>do), liquid) which means something like "cases of drinking where the "obj" is a liquid". Constraints can use Relation Labels, as they are defined in Appendix 3. Each constraint in the Constraint List should be sorted in alphabetical order.
When relation label is omitted, it is assumed that left most relation is omitted. For example, \(\mathrm{xxx}(\mathrm{icl}>\) change(icl \(>\mathrm{do}))\) can be replaced \(\mathrm{xxx}(\) icl \(>\) change \(>\mathrm{do})\).

\section*{Attributes}

The Constraint List can be followed by a list of attributes defined in Appendix 2, which provide information about how the concept is being used in a particular sentence.

\section*{UW ID}

A UW can include an UW ID. The UW ID is simply used to indicate some referential information: that there are two different occurrences of the same concept (they are not co-referent). Normally, if the same UW occurs more than once, it is in all cases understood to refer to the same entity or occurrence. For example, if one man greeted another man, the same UW would be used twice -- "man(icl>person)" and we could distinguish one from the other with UW IDs:
man(icl>person):01 for the first and man(icl>person):02 for the other, to make it clear that the first man did not greet himself.

\section*{Types}

UWs, then, are character strings (words or expressions) that can be given specifications, attributes and Instance IDs. Their function in the UNL system is to represent simple concepts. The three types of UWs, in order of practical importance are:
```

- Restricted UWs, which are Head Words with a Constraint List, for example:
state(agt>person,obj>information)
state(equ>nation)
state(icl>situation)
state(icl>government)
- Extra UWs, which are a special type of Restricted UW, for example:
ikebana(icl>activity,obj>flowers)
samba(icl>dance)
souflé(icl>food,pof>egg)
murano(icl>glass,aoj>colorful)
- and Basic UWs, which are bare Head Words with no Constraint List, for example:
go
take
house
state

```

\section*{Restricted Uws}

Restricted UWs are by far the most important. Each Restricted UW represents a more specific concept, or subset of concepts.
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

Consider again the examples of Restricted UWs given above:
state(agt>person,obj>information) is more specific concept
(arbitrarily associated with the English word "state") that denotes situations
in which humans produce some information, or state something.
state(equ>nation) is more specific sense of "state" that denotes a nation. state(icl>situation) is more specific sense of "state" that denotes a kind of situation.
state(icl>government) is more specific sense of "state" that denotes a kind of government.
The information in parentheses is the Constraint List and it describes some conceptual restrictions, that's why these are called Restricted UWs. Informally, the restrictions mean "restrict your attention to this particular sense of the word". Thus, the focus is clearly the idea and not the specific English word.
It often turns out that for a given language there is a wide variety of different words for these concepts and not, coincidentally, all the same word, as in English.
Notice that by organizing these senses around the English words, we can simplify the task of making a new UW/Specific Language dictionary: we can use a bilingual English/Specific Language dictionary and proceed from there, specifying the number different concepts necessary for each English word.
This of course does not mean that we're translating English words; we're just using the English dictionary to remind us of the concepts that we will want to deal with and thus to organize work more efficiently.

\section*{Extra Uws}

Extra UWs denote concepts that are not found in English and that have to be introduced as extra categories. Foreign-language labels are used as Head Words. Consider again the examples given above:
```

ikebana(icl>activity, obj>flower) "something you do with flowers"
samba(icl>dance) "a kind of dance"
soufflé(icl>food, pof>egg) "a kind of food made with eggs"
murano(icl>glass, aoj>colorful) "a kind of colorful glass"

```

To the extent that these concepts exist for English speakers, they are expressed with foreign-language loanwords and don't always appear in English dictionaries. So, they simply have to be added if we are going to be able to use these specific concepts in the UNL system. Notice that the Constraint List or restrictions already give some idea of what concept is associated with these Extra UWs and the Constraints binary relation this concept to other concepts already present (activity, flower, egg, food, etc.).

\section*{Basic Uws}

Basic UWs are character strings that correspond to an English word. They are used to structure the knowledge base and as a fall-back method for establishing correspondences between different language words when more specific correspondences cannot be found.

\section*{Compound UWs}

Compound UWs are a set of binary relations that are grouped together to express a concept . A sentence itself is considered a compound UW. This allows us to deal with situations like:
[Women who wear big hats in movie theaters] should be asked to leave.
Without Compound UWs, we wouldn't be able to build up complex ideas like "women who wear big hats in move theaters" and then relate them to other concepts.

\section*{Syntax}

Compound UWs are indicated by Compound UW-IDs, which are a colon " \(\because\) " followed by two digits. Compound UW-IDs can also be followed by an AttributeList.
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

More formally, their syntax can be described as follows:
```

 <Compound UW> ::= ":" <Compound UW-ID> ["."<Attribute List>]
 <Compound UW-ID> ::= {<upper case alphabetical character> |<digit>}
{<upper case alphabetical character> |<digit>}
<Attribute List> ::= <Attribute Label> ["." <Attribute Label>]...
<Attribute Label> ::= "@imperative" | "@may" | "@past" | ...
<digit> ::= 0|1|2|...|9
<upper case alphabetical character> ::= "A" | ... | "Z"
Interpretation

```

Compound UWs denote complex concepts that are to be interpreted as unit-concepts, understood as a whole so that we can talk about their parts all at the same time. Consider again the example given above. [Women who wear big hats in movie theaters] should be asked to leave.
The example does not mean that [women] or [women who wear big hats] should be asked to leave. Only when we group the structure together and talk about it as a whole unit do we get the correct interpretation.
Just as we can relate such complex units to other concepts with conceptual relations, we can attach Attributes to them to express, negation, speaker attitudes, etc. which are usually interpreted as modifying the main predicate within the Compound UW.

\section*{How to define Compound Uws}

Compound UWs are defined by placing a Compound UW-ID immediately after the Relation Label in all of the binary relations that are to be grouped together. Thus, in the example below, ":01" indicates all of the elements that are to be grouped together to define Compound UW number 01.
```

agt:01(wear(icl>do), woman(icl>person).@pl)
obj:01(wear(icl>do), hat(icl>thing))
aoj:01(big(aoj>thing), hat(icl>thing))
plc:01(wear(icl>do, theater(icl>place))
mod:01(theater(icl>place), movie(icl>thing))

```

After this group has been defined, wherever ":01" is used as an UW, it means that the UW should be understood as all of these Binary relations.
A Compound UW is considered as a sentence or sub-sentence, so in the definition of a Compound UW one entry node marked by @entry is necessary.

\section*{How to cite Compound UWs}

Once defined, Compound UWs can be cited or refered to by simply using the Compound UW-ID as an UW. To complete the example above, we could continue with:
```

agt(ask(icl>do).@should, :01)
obj(ask(icl>do), leave(icl>do))

```

Again, ":01" is interpreted as the whole set of binary relations defined above. Compound UWs can be cited within other Compound UWs.
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Attributes}

Attribute of UWs are used to describe what is said from the speaker's point of view: how the speaker views what is said. This includes phenomena technically called "speech acts", "propositional attitudes", "truth values", etc. Conceptual relations and UWs are used to describe objectively things, events and states-of-affairs in the world. Attributed of UWs enrich this description with more information about how the speaker views these states-of-affairs and his attitudes toward them.

\section*{Types of Attributes}

\section*{Time with respect to the speaker}

Where does the speaker situate his description in time, taking his moment of speaking as a point of reference? A time before he spoke? After? At approximately the same time? This is the information that defines "narrative time" as past, present or future. These Attributes are attached to the main predicate.
Although in many languages this information is signaled by tense markings on verbs, the concept is not tense, but "time with respect to the speaker". The clearest example is the simple present tense in English, which is not interpreted as present time, but as "independently of specific times".
Consider the example: The earth is round.
This sentence is true in the past, in the present and in the future, independently of speaker time, so although the tense is "present" it is not interpreted as present time.
\begin{tabular}{ll} 
@ past & happened in the past \\
@ present & happening at present \\
@future & will happen in future
\end{tabular}

\section*{Speaker's view of Aspect}

A speaker can emphasize or focus on a part of an event or treat it as a whole unit. This is closely linked to how the speaker places the event in time. These Attributes are attached to the main predicate.
He can focus on the beginning of the event, looking forward to it (@begin-soon), or backward to it (@begin-just).
He can focus on the middle of the event (@ progress).
He can also focus on the end of the event, looking forward to it (@end-soon) or backward to it from nearby ( @end just) or from farther away (@complete).
The speaker can choose to focus on the lasting effects or final state of the event (@state) or on the event as a repeating unit (@repeat).

\section*{@begin-soon}
@begin-just
@ progress
@end-soon
@end-just
@complete
@ state
@repeat

\section*{Speaker's view of Reference}

Whether an expression refers to a single individual, a small group or a whole set is often not clear. The expression "the lion" is not sufficiently explicit for us to know whether the speaker means "one particular lion" or "all lions". Consider the following examples:

The lion is a feline mammal.
The lion is eating an anti-lope.
In the first example, it seems reasonable to suppose that the speaker understood "the lion" as "all lions", whereas in the second example as "one particular lion".
The following Attributes are used to make explicit what the speaker's view of reference seems to be.
\begin{tabular}{ll} 
@ generic & generic concept \\
@ def & already referred \\
@indef & non-specific class \\
@ not & complement set \\
@ order & ordinal number
\end{tabular}

These Attributes are usually attached to UWs that denote things.

\section*{Speaker's Focus}

The speaker can choose to focus or emphasize the parts of a sentence to show how important he thinks they are in the situation described. This is often related to sentence structure.
```

@emphasis
@entry entry point or main UW of whole UNL expression or in hyper(scope) node
@qfocus
@theme instantiates an object from different class
@title
@topic ex) He(@topic)was killed by her.
One UW marked with " @entry" is essential to each UNL expression or in a Compound UW.

```

\section*{Speaker's attitudes}

The speaker can also express, directly or indirectly, what his attitudes or emotions are toward what is being said or who it is being said to. This includes respect and politeness toward the listener and surprise toward what is being said.
@affirmative
@confirmation
@exclamation feeling of exclamation
@imperative @interrogative @invitation
@ politeness
@respect
@ vocative
imperative
inducement to do polite feeling
considered as the way to speak. "Please, could you..."
feeling of respect
considered as a particle to show the respect ("Dear sir: ...").
ex) Dear(@vocative), please hurry up !

\section*{Speaker's viewpoint}

The variety of possibilities reflects degrees of belief, emphasis, and the extent to which what is said should be interpreted as a suggestion or order, as well as many other social factors such as the relative status of the speakers.
The following labels are used to clarify the speaker's viewpoint information.
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
\begin{tabular}{ll} 
@ability & \begin{tabular}{l} 
ability, capability of doing things \\
ex) He can speak English but he can't write it very well.
\end{tabular} \\
\begin{tabular}{l} 
@ability \\
@ability-past
\end{tabular} & \begin{tabular}{l} 
ability in the past \\
ex) I never could play the banjo. \\
apodosis: reality in the first person \\
ex) We should (would) love to go abroad if we had the chance. \\
apodosis: A supposed result from a supposition contrary to reality \\
ex) If we had more money, we could buy a car. \\
apodosis: A supposed result from an assumed condition \\
ex) He would smoke too much if I did not stop him.
\end{tabular} \\
@apodosis-unreal
\end{tabular}

\footnotetext{
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
}

You \{needn't/don't have to/are not obliged to \(\}\) be back by 10 o'clock.
@possibility assume reasonable possibility
ex ) Anybody can make mistakes.
The road can be blocked.
The road could be blocked.
@probability assume probability
ex) That would be his mother.
@should to feel duty
ex) You should do as he says.
@unexpected- presumption contrary to a wish or expectation
presumption ex) It is odd that you should say this to me.
I am sorry that this should have happened.
@unexpected- consequence contrary to a wish or expectation
consequence ex) I made a draft, but it still needs another work.
@ will
will to do
ex) I shall not be long.
We shall let you know our decision.
We shall overcome.

\section*{Convention}

Typical UNL structures can be expressed by attribute, to avoid the complexity of enconverting and deconverting. These attributes do not express speaker's information.
\begin{tabular}{ll} 
@angle_bracket & \(<>\) is used \\
@double_parenthesis & \multicolumn{1}{c}{\((())\) is used } \\
@double_quotation & " is used \\
@parenthesis & ( ) is used \\
@pl & plural \\
@single_quotation & [ ] is used used
\end{tabular}
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Format of UNL}

\section*{UNL Document}

The structure of UNL document is expressed using following tags.
\begin{tabular}{ll}
{\([\mathrm{D}]\)} & \begin{tabular}{l} 
Beginning of document \\
[/D]
\end{tabular} \\
\hline End of document \\
{\([\mathrm{P}]\)} & \begin{tabular}{l} 
Beginning of paragraph \\
{\([/ \mathrm{P}]\)}
\end{tabular} \\
End of paragraph \\
[S] & Beginning of sentence \\
{\([/ \mathrm{S}]\)} & End of sentence
\end{tabular}

UNL documents are generally constructed in the following manner.
\begin{tabular}{ll}
{\([\mathrm{D}]\)} & \begin{tabular}{l} 
Beginning of document \\
{\([\mathrm{P}]\)}
\end{tabular} \\
Beginning of paragraph \\
{\([\mathrm{S}]\)} & Beginning of sentence \\
\(\ldots\) & UNL expressions \\
{\([/ \mathrm{S}]\)} & End of sentence \\
\(\ldots\) & Repetition of \([\mathrm{S}] \ldots[/ \mathrm{S}]\) \\
{\([/ \mathrm{P}]\)} & End of paragraph \\
\(\ldots\) & Repetition of \([\mathrm{P}] \ldots[/ \mathrm{P}]\) \\
{\([/ \mathrm{D}]\)} & End of document \\
\(\ldots\) & Repetition of \([\mathrm{D}] \ldots[/ \mathrm{D}]\)
\end{tabular}

\section*{UNL Expression}

UNL expression is identified with the following tags:
\(\begin{array}{ll}\{\text { unl }\} & \text { Beginning of UNL expression } \\ \{/ \text { unl }\} & \text { End of UNL expression }\end{array}\)

There are two kinds of UNL expression, one is table form and another is list form. Table form of UNL expression is more readable than list form, but list form of UNL expression is more compact than table form.
In UNL expression, there are three types of information, such as binary relations, Uws, and encoded binary relations. The following tags are used to distinguish this information.
```

[W] Beginning of UW set
[/W] End of UW set
[R] Beginning of binary relations
[/R] End of binary relations
<Binary Relation> ::= <Relation Label> [":"<Compound UW-ID>]
"(" $\{<$ UW 1>] |":" <Compound UW-ID1>\} ","
\{<UW2>] |":" <Compound UW-ID2>\} ")"
<UW> ::= <Head Word> [<Constraint List>] [":" <UW-ID>] ["." <Attribute List>]
<Encoded Binary Relation> := \{<UW-ID> | <Compound UW-ID>\}
<Relation Label> [":" <Compound UW-ID>]
\{<UW-ID> | <Compound UW-ID>\}

```
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Table form of UNL expression}

Table form of UNL expression consist of binary relations or only one UW.
\{unl \}
<Binary Relation> ...
\{/unl\}
or
\{unl \}
[W]
<UW>
[/W]
\{/unl\}

\section*{List form of UNL expression}

List form of UNL expression consists of UWs and encoded binary relations.
\{unl \}
[W]
<UW>...
[/W]
[R]
<Encoded Binary Relation> ...
[/R]
\{/unl\}

Each tag, binary relation, UW, and encoded binary relation should be separated with carriage return (0x0a, or 0x0d 0x0a).

Sample of UNL expression in list form.
ex1) Monkey eats bananas
[S]
\{unl \}
[W]
eat(icl>do).@ present.@entry:00
monkey(icl>animal).@generic:01
banana(icl>food).@generic:02
[/W]
[R]
00agt01
00obj02
[/R]
[/S]
ex2) UNL is a common language that would be used for network communications.
[S]
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
```

{unl}
[W]
language(icl>abstract thing).@ present.@entry:00
UNL(icl>language).@topic:01
common(aoj>thing):02
use(icl>do).@present:03
language(icl>abstract thing).@ present.@entry:04
communication(icl>action).@pl:05
network(icl>thing):06
[/W]
[R]
00aoj01
00mod02
03obj04
03pur05
05mod06
[/R]
[/S]

```
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Appendix 1: Relation Labels}
\begin{tabular}{|c|c|}
\hline agt & a thing in forcus which initiates an event \\
\hline and & a conjunctive relation between concepts \\
\hline a0j & a thing which has an attribute \\
\hline bas & a thing used as the basis of comparison for focussed thing \\
\hline cag & a thing not in focus which initiates an event \\
\hline cao & a thing not in focus which is in a state in parallel \\
\hline cnt & an equivalent concept \\
\hline cob & a thing not in focus which is directly affected by an implicit event which is done in parallel \\
\hline con & a non-focused event or state which influences on an focused event or state \\
\hline coo & a co-occurred event or state for a focussed event or state \\
\hline dur & a period of time during an event or state occurred \\
\hline fmt & a range between two things \\
\hline frm & an origin of a thing \\
\hline gol & a final state of object or the thing finally associated with object of an event \\
\hline ins & an instrument to carry out an event \\
\hline man & a way to carry out event or characteristics of a state \\
\hline met & a means to carry out an event \\
\hline mod & a thing which restrict a focussed thing \\
\hline nam & a name of a thing. \\
\hline obj & a thing in focus which is directly affected by an event \\
\hline or & disjunctive relation between two concepts \\
\hline per & a basis or unit of proportion, rate or distribution \\
\hline ple & a place an event occurs or a state is true or a thing exists \\
\hline plf & a place an event begins or a state becomes true \\
\hline plt & a place an event ends or a state becomes false \\
\hline pof & a thing of which a focussed thing is a part. \\
\hline pos & a possessor of a thing or a place \\
\hline ptn & an indispensable non-focused initiator of an event \\
\hline pur & a purpose or objectives of agent of an event or the purpose of a thing exist \\
\hline qua & a quantity of a thing or unit \\
\hline rsn & a reason that an event or a state happens \\
\hline sen & a environment where an event occurs \\
\hline seq & a prior event or state of a focused event or state \\
\hline src & an initial state of object or the thing initially associated with object of an event \\
\hline tim & a time an event occurs or a state is true \\
\hline tmf & a time an event starts or a state become true \\
\hline tmt & a time an event ends or a state becomes false \\
\hline to & a destination of a thing \\
\hline via & an intermediate place or state of an event \\
\hline
\end{tabular}
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Appendix 2: Attribute Labels}

@ theme
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.
@ thought
@title
@topic
@unexpectation
@will
© Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

\section*{Appendix 3: Conventions for syntax notation}
\begin{tabular}{ll} 
Symbol & Definition \\
\(::=\) & ...is defined as... \\
I & disjunction, "or" \\
{[]} & optional element \\
\(\}\) & alternative element \\
\(\ldots\) & one or more occurences \\
\(" "\) & encloses string of literal characters \\
\(<x x x>\) & variable name
\end{tabular}```


[^0]:    © Copyright The United Nations University / Institute of Advanced Studies 1999. All rights reserved.

