Macau, March 12t

X1 UNL School
Day #2

Day #2

X-bar
Grammars

Grammar Specs
Basic symbols
Nodes
Relations

Grammar Strucutre
Normalization Grammmar
Language-Specific Grammar
Default Grammar

Grammar Types

T-grammar
D-grammar

X-bar Theory

Grammar frameworks

DCG (Definite Clause Grammar)

GPSG (Generalized Phrase Structure Grammar)
HPSG (Head-driven Phrase-Structure Grammar)
TAG (Tree Adjoining Grammar)

UG (Unification Grammar)

CG (Categorial Grammar)

FUG (Functional Unification Grammar)

SFG (Systemic functional grammar (SFG)

LFG (Lexical-functional Grammar)

Generative Grammar

ST (Standard Theory)

EST (Extended Standard Theory)
X-bar

GB (Government and Binding)
PP (Principles and Parameters)

X-bar structure

Where:
XP XP = maximal projection
XB = intermediate projections
spec = specifier
adjt = adjunct

U spec b XB comp = complement
I X = head
‘ N (noun)
| | V (verb)
s J (adjective)
U XB U a th A (adverb)

D (determiner)
P (preposition)
C (conjunction)

. X || comp

Possible configurations of a XP (I)

[construction] [the] [construction] [construction] [of the tower] [fateful] [construction]
NP | NP . NP | NP
. NB | SPEC || NB | NB . NB
U N | N | ~ U COMP U N U ADJT
[the] [construction] [of the tower] [fateful] [construction] [of the tower]
- [the] [fateful] [construction] L NP
" NP "
u SPEC \ NB ¥ b NB
' | SPEC | NB :

I NUCOMP | | | U NB UADJT
N ADJT [[eom

Possible configurations of a XP (ll)

[the] [fateful] [construction] [of the tower]
[the] [long] [fateful] [construction] [of the tower]

o ~

NP NP
| SPEC | NB USPEC LN
u U " U lI?lB uADJT

NB ADJT oo |[s ‘
| —— | N | ADiT
U N U COMP H NB H ADJT =

—~— | N UCOMP

| NB | ADJT

U NB UADJT

| N | cowmp
[the] [long] [fateful] [expensive] [construction] [of the tower]

etc.

RIGHT ADJUNCTION

NP

|« | o

| ook | o

LEFT ADJUNCTION

NP

U NB

U A_DJT U _N

Ubeautiful U books

Examples

Tortoise

U tortoise

The tortoise

. DP

. DB

| the

NP

U tortoise

The beautiful tortoise

. NP
U NB

. DP .

| DB | - U -

U D . B U N

J U the U _J Utortoise

The beautiful tortoise won the race

. VP
NP { VB
| NB
= U NB U v NP
= . or U N e
U D \ 8 U ——— u won DP Li e
| the U I | 1?3 U N

— || race
i U beautiful
| the

Topmost levels

ER

U Specifier b CB

Adjunct U
U (topicalization) CB

' ; | -
(conjunction, if any)
U Specifier U -
(subject)

I
U (auxiliary, if any) U L4

CP

when to use

(I know that) Peter killed Mary Yesterday Peter killed Mary

subordinating conjunction (“that”) topicalization (of “yesterday”)

b CB
C
U (that) U _IP

AP U
U (Yesterday) FB

C
U empy JUP
| NP
IB NP
U (Peter) U - (Peter) U .IB
| L VP | | U VP
U (empty) (killed Mary) U (empty) (killed Mary)

IP

when to use

(I know that) Peter killed Mary Peter is killing Mary

CP exists Auxiliary verbs
cp I=
NP
b B (Peter) b B
‘ U U VP
c |
U (that) il ‘
I : spec
| U - empty) | VB
U NP U B
(Peter) U y NP
1 (Mary)

| VP |
U (empty) (killed Mary) U killing

The Tortoise did not stop (I)

IEN N
U II-DB | _N U did | E/B

U ,_D u tortoise u ,'_A\P U _V
U the u I/-AB u stop
I _A

u not

The Tortoise did not stop (II)

| NP#2 | DP#1
P -- !
" | DP#1 || NB =
L U D
NP#2 1B | VP#1 I
u u L I U _N | the
| | u VB
" tortoise
| B | VP \ o [oor:
" UAP#l | vB |
U | " | AB
, LV "
! U A
| did | stop "

| not

Coordination

NP
| NP [and | NP

. NP

y NP | and || NP

| NP UandUNP

The Hare and the Tortoise

)

NP
| NP#1 || “and” [NP#2
| NP#2 DL . DP#1
| DP#1 | NB | or# || E | DB
U N ' \ L \ U 2

U hare Utortoise U the

Exercise #6

Build the x-bar tree (modified) for the sentences of
the corpus UCB1 (available at www.unlweb.net/wiki/UCB1)

Fhe Hareandthe Tortoise

The Hare one day ridiculed the short feet and slow pace of the Tortoise.
"Though you be swift as the wind, | will beat you in a race."

The Hare believed her assertion to be simply impossible and assented to the proposal.
They agreed that the Fox should choose the course and fix the goal.

On the day appointed for the race the two started together.

She went on with a slow but steady pace straight to the end of the course.
The Hare laid down by the wayside and took a nap under a tree.

At last, he woke up and ran as fast as he could, but it was too late.

The Tortoise had already won the race.

Slow but steady progress wins the race.

Trees x Networks

Trees x Networks

TREE

. XP
| spec | xB DEARBORISATION

U - | adi ARBORISATION
X

XP(XB(XB(X;comp);adjt);spec)

| comp

NETWORK

XS(X;spec)
XA(X;adjt)
XC(X;comp)

% UNDL

Grammar Specs

www.unlweb.net/wiki/Grammar_Specs

Basic Symbols

Symbol

{1}

Definition
not
or
index for nodes, attributes and values
index for sub-NLWs
attribute-value assignment
rule trigger
merge operator
dictionary lookup operator
string
natural language entry (headword)
UW
node

regular expression

Example
Aa =not a
{alb} =aorb

90x (see below)

#01 (see below)

POS=NOU

'PLR

Yox& Yoy

| a]

"went"

[go]

[[to go(icl>to move)]]
(a)

/a{2,3}/ = aa,aaa

Pre-defined values

SCOPE - Scope

SHEAD - Sentence head (the beginning of a
sentence)

STAIL - Sentence tail (the end of a sentence)
CHEAD - Scope head (the beginning of a scope)
CTAIL - Scope tail (the end of a scope)

TEMP - Temporary entry (entry not found in the
dictionary)

DIGIT - Any sequence of digits (i.e.:

OI 1I 2[3[4[5[6I7I 8[9)

(NODES)
"string" {1}
[headword] {1}
[[UW]] {13
%index {1}

attribute=value {o,}

feature {o,}

Examples of Nodes

("ing”)
(a node making reference only to its actual string value)
([book])
(a node making reference only to its headword,i.e., its original state in the dictionary)
([[book(icl>document)]])
(a node making reference only to its UW value)
(SNQG)
(a node making reference only to one of its features)
(POS=NOU)
(a node making reference only to one of its features in the attribute-value pair format)
(%x)
(a node making reference only to its unique index)
("string",[headword],
[[UW]],featurea,featurez,...,attribute1=valuex,attribute2=value2,...,%x)
(complete node)

Properties of Nodes (I)

Nodes are enclosed between (parentheses)
("a") is a node

a" is not a note
The elements of a node are separated by comma

("a",[a],[[al],A,B,A=C,%a)
The order of elements inside a node is not relevant.

("a" [a],[[a]],A,B,A=C,%a) is the same as ([[a]],B,A,"a",[a],A=C,%a)
Nodes may have one single string, headword UW and index,
but may have as many features as necessary

a~~b") (a node may not contain more than one string)

=21t (a node may not contain more than one headword)
a1 (a node may not contain more than one UW)

Y%a;%b) (a node may not contain more than one index)
(A,B,C,D,...,Z) (a node may contain as many features as necessary)

Properties of Nodes (ll)

A node may be referred by any of its elements
("a") refers to all nodes where actual string = "a"
([a]) refers to all nodes where headword =[a]
([[a]]) refers to all nodes where UW = [[a]]
(%a) refers to all nodes having the feature A

("a",[a],[[al],A) refers to all nodes having the feature A where string = "a" and headword = [a]

and UW = [[a]]
Nodes are automatically indexed according to a position-based system if no
explicit index is provided

("a")("b") is actually ("a",%o01)("b",%02)
Regular expressions may be used to make reference to any element of the
node, except the index

("/af2,3}/") refers to all nodes where string is a sequence of 2 to 3 characters "a"

([/af2,3}/]) refers to all nodes where headword is a sequence of 2 to 3 characters "a"

([[/af2,3}/1]) refers to all nodes where UW is a sequence of 2 to 3 characters "a"

(/af2,3}/) refers to all nodes having a feature that is a sequence of 2 to 3 characters "a"

Properties of Nodes (ll)

Nodes may contain disjoint features enclosed between
fbraces} and separated by the vertical bar |

(fA|B}) refers to all nodes having the feature AOR B
Node features may be expressed as simple attributes,
or attribute-value pairs

(MCL) - feature as an attribute: refers to all nodes having the
feature MCL
(GEN=MCL) - feature as an attribute-value pair, which is the
same as (GEN,MCL): refers to all nodes having the features GEN
and MCL.
Attribute-value pairs may be used to create co-reference
between different nodes (as in agreement):

(%x,GEN)(%y, GEN=%x) - the value of the attribute GEN of the
node %x is the same of the attribute GEN of the node %y

Relations

REL(ARG#1;ARG#2;....ARG#n)

Relations do not have any feature:
string
headword
attribute
values
indexes
etc.

Relations may have scopes
REL(ARG#1;:01)
REL:01(ARG#2;ARG#3)

Examples of Relations

L(%x;%y) - linear relation

agt(%x;%y) - semantic relation

VH(%x) - unary syntactic relation
VC(%x;%y) - binary syntactic relation
XX(%0x;%y;%z) - possible ternary syntactic
relation

Properties of Relations (I)

Arguments of relations are not commutative
relation(%x;%y) # relation(%oy;%x)

Inside each relation, nodes are isolated by

semicolon (;)

relation(%x;%y)

Inside each node, features are isolated by
comma(,)

relation("string1",[headwordai],
[[UWa]],featurex,attribute=value,...,%x; "string2",
[headword2],[[UW2],feature2,attribute=value,...,%y)

Properties of Relations (ll)

Relations may be disjoined through
{braces}

("a")|("b™)3("c") - either ("a")("c") or ("b")("c")
{agt(%x,%y)|exp(%x,%y)}obj(%x,%z) - either
agt(%x;%y)obj(%x;%z) or exp(%x;%y)obj(%x;%z)

Relations may be replaced by regular
expressions

[.12,3}/(%x;%y) - any relation made of two or three
characters between %x and %y

Types of Grammar

Types of Grammar

T-GRAMMAR D-GRAMMAR
Mandatory Optional
Transformation rules Disambiguation rules
CONDITION:=ACTION; CONDITION=PROBABILITY;
Examples: Examples:

(A, %6x):=(%x,-A, +B); (%a)=0;

(A,%x)(B,%y):=; (%0b)(%a)=o0;
(A, %0x)(B, %y):=(%x); (%a)(%b)=1;
(A, %x)(B,%y):=(%y);

(A, %x)(B, %0y):=(%y) (%x);

(A, %0x)(B, %0y):=(%x)(C, %z)(%y);

(A,%x)(B,%y):=rel(%x;%yY);

% UNDL

Transformation Rules

Analysis

NATURAL LANGUAGE ANALYSIS

LIST-TO-LIST (LL)

Transformation Rules

(- O - - O o 0 O

(%CI)::(%CI)(%b); or

ADD
(%a):=(%b)(%a);
DELETE (Yoa):=-(%a);
REPLACE (Yoa):=(%b);
MERGE (Y0a)(Yb):=(%c);

DIVIDE (Yoa):=(%b)(%oc);

LIST-TO-TREE (LT)

Transformation Rules

o 10w Qv fiow B

REPLACE (Y00a)(%b):=SYN(%a;%b);

TREE-TO-TREE (TT)

Transformation Rules

ADD RELATION SYN(%a;%b):=+SYN(%c;%d);
DELETE RELATION SYN(%a;%b):=-SYN(%a;%b);
REPLACE RELATION SYN(%a;%b):=SYN(%c;%d);

MERGE RELATION SYN(%0;%b)SYN(Yoc;%d):=SYN(Yoe;%f);
DIVIDE RELATION SYN(%a;%b):=SYN(%c;%d)S YN(%oe;%f);

ADD NODE SYN(%a;%b):=SYN(%a;%b;%c);
DELETE NODE SYN(%a;%b):=SYN(%a);

TREE-TO-NETWORK (TN)

Transformation Rules

REPLACE SYN(%c;%d):=SEM(%a;%b);:

NETWORK-TO-NETWORK (NN)

Transformation Rules

ADD RELATION SEM(%a;%b):=+SEM(%c;%d);
DELETE RELATION SEM(%a;%b):=-SEM(%a;%b);
REPLACE RELATION SEM(%a;%b):=SEM(%c;%d);
MERGE RELATION SEM(%a;%b)SEM(Yoc;%d):=SEM(Y%e;%f);

DIVIDE RELATION SEM(%a;%b):=SEM(%c;%d)SEM(%oe;%f);

Generation

List | " Syntactic Network- Semantic
< Q <CCSS”9 \ Tree—to-Lust\ <cessng \ <)Tree Processing

NATURAL LANGUAGE GENERATION

NETWORK-TO-NETWORK (NN)

Transformation Rules

ADD RELATION SEM(%a;%b):=+SEM(%c;%d);
DELETE RELATION SEM(%a;%b):=-SEM(%a;%b);
REPLACE RELATION SEM(%a;%b):=SEM(%c;%d);
MERGE RELATION SEM(%0a;%b)SEM(Yc;%d):=SEM(%e;%f);

DIVIDE RELATION SEM(%a;%b):=SEM(%c;%d)SEM(%oe;%f);

NETWORK-TO-TREE (NT)

Transformation Rules

REPLACE SEM(%a;%b):=SYN(%c;%d);

TREE-TO-TREE (TT)

Transformation Rules

ADD RELATION SYN(%0;%b):=+SYN(Yoc;%d);
DELETE RELATION SYN(Y%a;%b):=-SYN(%a;%b);
REPLACE RELATION SYN(%a;%b):=SYN(%c;%d);

MERGE RELATION SYN(%0;%b)SYN(Yoc;%d):=SYN(Yoe;%f);
DIVIDE RELATION SYN(%a;%b):=SYN(%c;%d)S YN(%oe;%f);

ADD NODE SYN(%a;%b):=SYN(A;B;C);
DELETE NODE SYN(%a;%b):=SYN(%a);

TREE-TO-LIST (TL)

Transformation Rules

REPLACE SYN(%a;%b):=(%c);

LIST-TO-LIST (LL)

Transformation Rules

(- O - - O o 0 O

(%CI)::(%CI)(%b); or

ADD
(%a):=(%b)(%a);
DELETE (Yoa):=-(%a);
REPLACE (Yoa):=(%b);
MERGE (Y0a)(Yb):=(%c);

DIVIDE (Yoa):=(%b)(%oc);

General Properties of

Transformation Rules

PRIORITY
Rules are applied serially, according to the order defined in the grammar. The

first rule will be the first to be applied, the second will the second, and so on.

RECURSIVENESS
Rules are applied recursively as long as their conditions are true.

COMPREHENSIVENESS
Grammars are applied comprehensively as long as there is at least one

applicable rule.

ACTION
The rules may add or delete values to the source and the target nodes, but only
in the right side items:

agt(a;b):=agt(+c;);

agt(a;b):=agt(;-b);

General Properties of

Transformation Rules

CONSERVATION
Rules affect only the information clearly specified. No relation, node or feature
is deleted unless explicitly informed.

For instance, in the examples below, the source node of the “agt” relation preserves,
in all cases, the value “a”. The only change concerns the feature “c”, which is added
to the source node of the “agt” in the first two cases; and the feature “b”, which is
deleted from the target node in the third case.

agt(a;b):=agt(c;);
agt(a;b):=agt(+c;);
agt(a;b):=agt(;-b);

In any case, the ADD and DELETE rules (i.e., when the right side starts with “+"or “-")
preserve the items in the left side, except for the explicitly deleted ones:

General Properties of

Transformation Rules

SCOPE
The REPLACE, MERGE and DIVIDE rules affect only their designated scopes.

NN may only replace, merge or divide semantic relations; TT may only replace,
merge or divide syntactic relations; and LL may only replace, merge or divide list
nodes. All other information is preserved, unless explicitly informed.

INPUT: agt(a;b) cob(a;c)
RULE: cob(;):=0obj(;);
OUTPUT: agt(a;b) obj(a;c)
INPUT: agt(a;b) cob(a;c)
RULE: cob(a;):=obj(-a,+d;);

OUTPUT: agt(a;b) obj(d;c)

General Properties of

Transformation Rules

CONJUNCTION
Both the left and the right side of the rule may have as many items as necessary.

The items must be juxtaposed.
SEM(%a;%b)SEM(%c;%d)SEM(%e;%f):=SEM(G;H)SEM(I:))SEM(K;L):

DISJUNCTION

The left side of the rules may bring disjuncts, but not the right side.
{SEM(%a;%b)|SEM(%c; %d)}SEM(%e; %f):=+SEM(%e; %f);
SEM(%a;%b){SEM(%c;%d)|SEM(%e;%f)}:=-SEM(%a; %b);
agt(VER,{Vo1|Vo2};NOU,ASNG}):=;

General Properties of

Transformation Rules

COMMUTATIVITY
Inside the same side of the rule, the order of the factors does not affect the end
result, except for list-processing rules (LL, LT and TL).

SEM(%a;%b):=SEM(%c;%d)SEM(%e;%f); = SEM(%a;%b):= SEM(%e;%f)SEM(%c;%d);
SYN(%a;%b):=SYN(%c;%d)SYN(%e;%f); = SYN(%a;%b):= SYN(%e;%f)SYN(%c;%d);

But:

(%a):=(%b)(%c); = (%a):=(%c)(%b);
SYN(%a;%b):=(%c)(%d); = SYN(%a;%b):=(%d)(%c);
(%c)(%d):=SYN(%a;%b); = (%d)(%c):=SYN(%a;%b);

Additionally, the order of the features inside a relation does not affect the end
result, but the order of the nodes is non-commutative.

SEM(VERTRA; NOU,MCL) = SEM(TRA,VER; MCL,NOU)

But:

SEM(VER,TRA; NOUMCL) = SEM(NOU,MCL;VER,TRA)

General Properties of

Transformation Rules

INDEXATION
Default indexation

If omitted, indexes are assigned by default
In default indexation, left-side nodes are automatically co-indexed with
right-side nodes if and only if their position and number are the same:
* X(A;B):=Y(C;D); is the same as X(%01,A;%02,B):=Y(%01,C;%02,D);
Non-co-indexed nodes in the right side means ADDITION, whereas left-
side nodes that are not referred to in the right side means DELETION
o X(%a;%b):=Y(%4a;X;%b); is the same as X(%a;%b):=Y (%a;%02,X,;
%b);
Indexes may also be used to transfer attribute values expressed in the
format ATTRIBUTE=VALUE
« X(A,%a,ATT1=VAL1;B,%b):=X(%a;%b, ATT1=%a);

Examples of T-rules

(BLK):=;
deletes the blank space
(N,PLR,A"@pl,"@multal,*"@paucal,A@all):=(+att=@pl);
books > book.@pl
([not])([to],%x)(V,%y):=(%x)(+att=@not, %y);
not to do > to do.@not
(D,%d)([all],%all):=(%all)(%d);
the all books > all the books, my all books > all my books
(TEMP,%x)(BLK,%y)(TEMP,%z):=(%x&%y&%z,-BLK);
merges temporary words
agt(%x,COP;%y)obj(%x;%z):=a0j(%z,+att=%x; %y);

eliminates the copula

Exercise #7

Write the following rules:
Delete all the punctuation signs (PUT)
Add a blank space (BLK) between two nouns (N)
Reverse the order of (J)(N)
Remove the feature MCL from the nouns (N)
Add the feature VER to the verbs (V) that do not have this feature yet

Copy the value of the attribute gender (GEN) from the noun (N) to the
immediately adjacent adjectives (J), to the left and to the right

Create a relation REL between a noun (N) and the verb (V) that comes
immediately at its left side

Delete a relation REL between an adverb (%a) and a preposition (P)

Reverse the order of the arguments inside a relation REL between a verb (V)
and a pronoun (R)

Replace the relation REL between two verbs by the relation REL2 between
the same verbs

Disambiguation rules

Disambiguation rules

Negative rules (prohibition)
(DET)(V)=0;
Determiners cannot precede verbs
Positive rules (induction)
(SHEAD)(DET)=1;

Determiners normally come at the beginning of the
sentence

Exercise #8

Prevent the string « a » from occurring
before the string « b »

Prevent a noun from occurring before a verb
Prevent a preposition from occurring at the
veginning of the sentence

Prevent any word, except verbs, from
occurring at the end of the sentence

Grammar Structure

Grammar structure

Normalization Grammar

Standardization

Puts the features in the structure
attribute=value

Examples
(SNG,ANUM):=(-SNG,+NUM=SNG);
(PLR,ANUM):=(-PLR,+NUM=PLR);

Propagation
Propagates the values of features
(SNGT,ASNG):=(-NUM,-SGNT,+NUM=SNG, +NUM=SNGT);

(PLRT,APLR):=(-NUM,-PLRT,+NUM=PLR,+NUM=PLRT);
(INV,ASNG,APLR):=(-NUM,-INV,+NUM=SNG, +NUM=PLR,+NUM=INV);

Language-Specific Grammar

([not])([to], %ox)(V, %y):=(%x)(+att=@not, %y);
not to do >to do.@not
({[not]|[nt]})({V,"AUX|J|N|A|D3},%x):=(+att=@not, %ox);

not kill > kill. @not

Default Grammar

(TEMP,%x)(BLK,%y)(TEMP,%z):=(%x&%y&%z,-BLK);
merges temporary words

(PPN, %x)(BLK,%yY)(PPN,%z):=(%x&%y&%z,+ TEMP,-BLK);
merges sequences of proper names

(BLK):=;

deletes the blank space (this rule applies only if the blank space is in
the dictionary)

Exercise #9 (IAN)

Download the normalization and the default
grammar from the wiki and upload them to

JAN.
Test the grammars with the dictionary and

the corpus UCA1_<your locale>.txt
Analyze the results

The grammars are available at:
www.unlweb.net/wiki/UCA1

Exercise #10 (EUGENE)

Download the normalization and the default
grammar from the wiki and upload them to

EUGENE.
Test the grammars with the dictionary and

the corpus UCA1_unl.txt

The grammars are available at:
www.unlweb.net/wiki/UCA1

